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• The leading acoustic-gravity mode dominates the solution.
• At large enough depths, the solution for the leading mode is only slightly affected by the elasticity of the ground.
• At relatively small water depths only the Scholte wave outlasts.
• Light is shed on mechanisms involved in transforming energy from the ocean to the crust as part of the microseisms phenomenon.
• The depth at which an acoustic-gravity wave attains its maximum intensity can be estimated.
• Knowledge of the behavior of acoustic-gravity waves with depth can be applied for the early detection of tsunami.
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a b s t r a c t

The mathematical solution for the two-dimensional linear problem of acoustic-gravity
waves in a compressible oceanwith an elastic bottom is presented. The physical properties
of these waves are studied, and compared with those for waves over rigid ground. The
solutions for constant water depth, together with the assumption of constant energy flux,
are used to study the shoaling of acoustic-gravity waves over a slowly-varying bathymetry.
The presentwork enriches our knowledge about acoustic-gravitywaves in away that could
assist, among others, in the early detection of tsunami.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most studies of ocean surface-waves neglect the small compressibility of the water. This approach is justified for many
physical applications, but not necessarily for all. In an incompressible ocean, with constant depth, h, and rigid-bottom,
any given frequency ω corresponds to one progressive gravity wave with wavenumber k. If the small compressibility of
the water is taken into account, any given frequency ω corresponds to several progressive waves, with wavenumbers
kn, n = 0, 1, . . . ,N . The wavenumber k0 is almost identical to k, whereas kN < kN−1 < · · · < k2 < k1 � k0. The
additional waves (k1, . . . , kN ) are called acoustic-gravity waves, and N is the nearest integer smaller than (ωh/πCl + 1/2),
where Cl is the speed of sound in water.

Acoustic-gravity waves are generated spontaneously in the ocean, as a result of nonlinear interactions of pairs of nearly
opposing gravity-waves having equal or nearly equal frequencies, see [1–3], and references therein. Particularly energetic
acoustic-gravity waves appear as a result of submarine earthquake, see [4, Chapter 3].

In contrast to the gravity wave, which decays exponentially with depth, the acoustic-gravity waves have an oscillatory
vertical profile down to the ocean bottom, which stresses the ground and generates the earth’s microseism [5]. In this note
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Fig. 1. Schematic representation of the flow domain; h is the water depth; η(x, t) is the surface elevation; φl is the velocity potential of the liquidmedium;
φs and ψs are the dilatation and rotation potentials of the half-space solid medium, respectively.

we study the effects of replacing the rigid-bottom assumption, by an elastic half-space solid medium, on the properties of
the acoustic-gravity waves.

This paper is composed of five main sections. The physical problem is formulated in Section 2 and its mathematical
solution is given in Section 3. The results for water of constant depth, and for waves shoaling over a slowly varying
bathymetry are discussed in Sections 4 and 5, respectively. Finally, conclusions are drawn in Section 6.

2. Formulation

Let us consider an ocean of a constant depth-h, in the field of gravity-g , assume that it is unbounded in the horizontal
x-direction and supported below by an infinite deep elastic solid. The origin of the Cartesian coordinate system is at the
unperturbed free-surface and the z-axis is oriented upwards, see Fig. 1.

The study of two-dimensional progressive waves is formulated herein by
(i) The linearized theory of irrotational flow for the liquid.
(ii) Linear elasticity theory for the solid.

The velocity components of the liquid in the-(x, z) directions are denoted by (u̇l, ẇl), whereas the corresponding
displacements in the solid are (us, ws). These kinematic quantities can be expressed through: (i) a velocity potential φl,
for the liquid; and (ii) a dilatation potential φs and a rotation potential ψs, for the solid. The kinematic quantities are related
to the potentials by

u̇l = −∂φl

∂x
, (1a)

ẇl = −∂φl

∂z
, (1b)

us = ∂φs

∂x
+ ∂ψs

∂z
, (2a)

ws = ∂φs

∂z
− ∂ψs

∂x
. (2b)

The potentials themselves are governed by three wave-equations,

∂2φl

∂t2
= C

2
l

�
∂2φl

∂x2
+ ∂2φl

∂z2

�
, −h ≤ z ≤ 0, (3)

∂2φs

∂t2
= C

2
p

�
∂2φs

∂x2
+ ∂2φs

∂z2

�
, z ≤ −h, (4)

and

∂2ψs

∂t2
= C

2
s

�
∂2ψs

∂x2
+ ∂2ψs

∂z2

�
, z ≤ −h, (5)

where Cl is the speed of sound in the water; and Cp, Cs are the pressure-wave and shear-wave velocities in the ground, re-
spectively. Note that, the later twomaybe related to the Lame’s elasticity constants (λ, µ) and the density of the solid (ρs) by:

Cp =
�

(λ + 2µ)/ρs, (6a)

Cs =
�

µ/ρs. (6b)
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To complete the mathematical formulation one has to specify the boundary conditions at the free surface, at the bottom
and at z → −∞. The linearized free-surface boundary condition is

∂2φl

∂t2
+ g

∂φl

∂z
= 0, z = 0. (7)

At the bottom one has three conditions,

∂ws

∂t
= ẇl, z = −h, (8a)

σzz = −Pl, z = −h, (8b)

and

σxz = 0, z = −h, (8c)

where the axial-stress σzz and shear-stress σxz are given by

σzz = λ

�
∂us

∂x
+ ∂ws

∂z

�
+ 2µ

∂ws

∂z
, (9a)

σxz = µ

�
∂ws

∂x
+ ∂us

∂z

�
, (9b)

and the dynamic pressure in the water is

Pl = ρl

∂φl

∂t
, (10)

where ρl is the density of the water.
For z → −∞ we require that φs and ψs decay. Note that the free-surface elevation is given by

η = 1
g

∂φl

∂t
, z = 0. (11)

3. Solution

Seeking progressive wave solutions, using the method of separation of variables and the condition at z → −∞, one gets

φs = D1 exp (qz + i(kx − ωt)) , (12a)
ψs = D2 exp (sz + i(kx − ωt)) , (12b)

and

φl = [E1 cos(irz) + E2 sin(irz)] exp (i(kx − ωt)) , (12c)

where ω is a prescribed frequency, and

q =
�
k2 − ω2/C2

p
, (13a)

s =
�
k2 − ω2/C2

s
, (13b)

r =
�
k2 − ω2/C2

l
, (13c)

and k is the wavenumber, which needs to be solved.
The constants D1,D2 and E1, E2 are obtained as follows. Using the boundary conditions prescribed by Eqs. (7) and (8c),

gives respectively

E2 = −iω2
E1/(gr), (14a)

D2 = −2ikq exp (h(s − q))D1/(k
2 + s

2). (14b)

Substituting Eq. (14b) into Eqs. (12b) and (14a) into Eq. (12c) and then Eqs. (12a)–(12c) into the remaining boundary
conditions, Eqs. (8a) and (8b), gives a homogeneous system of two linear algebraic equations for two unknowns D1, E1

a11D1 + a12E1 = 0,
a21D1 + a22E1 = 0,

(15)
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where

a11 = iωq exp(−qh)(k2 − s
2)/(k2 + s

2), (16a)

a12 = ir sin(irh) + ω2 cos(irh)/g, (16b)

a21 = exp(−qh)
�
4µk

2
sq/(k2 + s

2) − (λ + 2µ)q2 + λk2
�
, (16c)

a22 = ωρl

�
i cos(irh) − ω2 sin(irh)/(gr)

�
. (16d)

For a nontrivial solution, the determinant of Eq. (15) must vanish, which yields the following dispersion relation,

tanh(hr) =
ω2

r

�
qρl

�
k
2−s

2

k2+s2

�
+ 1

g

�
4k2qsµ
k2+s2

−
�
(λ + 2µ) q2 − λk2

���

ω4qρl
gr2

�
k2−s2

k2+s2

�
+

�
4k2qsµ
k2+s2

−
�
(λ + 2µ) q2 − λk2

�� . (17)

Note that substitution of Eqs. (13a)–(13c) into Eq. (17) enables to view the latter either in the form of k = k(ω, g, ρl,
ρs, λ, µ) or alternatively as, r = r(ω, g, ρl, ρs, λ, µ). In addition Eq. (15), gives

D1 = −a12E1/a11, (18)

and Eq. (11) yields

η = −iω/gE1 exp (i(kx − ωt)) ≡ A exp (i(kx − ωt)) , (19)

where

A = −iωE1/g, (20a)

or

E1 = −igA/ω. (20b)

Eqs. (20b), (18), (14a) and (14b), enable us to express all four unknowns E1, E2,D1 and D2 in terms of a freely chosen
free-surface amplitude A. Writing the unknowns in terms of the free-surface amplitude A, gives

E1 = igA/ω, (21a)

D1 = −exp(qh)
�
k
2 + s

2
� �

igr sin(ihr) + ω2 cos(ihr)
�

qω2
�
k2 − s2

� A, (21b)

E2 = ωA/r, (21c)

D2 = 2ik exp(sh)
�
igr sin(ihr) + ω2 cos(ihr)

�

ω2
�
k2 − s2

� A. (21d)

By substituting Eqs. (21b) and (21d) into Eqs. (12a) and (12b), and Eqs. (21a) and (21c) into Eq. (12c), we can express the
potential functions in terms of A,

φs = −exp (q(h + z))
�
k
2 + s

2
� �

igr sin(ihr) + ω2 cos(ihr)
�

qω2
�
k2 − s2

� A exp (i(kx − ωt)) , (22a)

ψs = 2ik exp (s(h + z))
�
igr sin(ihr) + ω2 cos(ihr)

�

ω2
�
k2 − s2

� A exp (i(kx − ωt)) , (22b)

φl = (ig/ω cos(irz) + ω/r sin(irz)) A exp (i(kx − ωt)) . (22c)

Substituting Eqs. (22a) and (22b) into Eq. (2a,b) and taking the real part, gives us the solid’s horizontal and vertical
displacement functions in terms of A as follows (note that for acoustic-gravity waves, r is always imaginary):

us = Ak

�
k
2 + s

2

q
exp (q(z + h)) − 2s exp (s(z + h))

�
· igr sin(ihr) + ω2 cos(ihr)

ω2
�
k2 − s2

� sin(kx − ωt), (23a)

ws = A

�
2k2 exp (s(z + h)) −

�
k
2 + s

2� exp (q(z + h))
�
· igr sin(ihr) + ω2 cos(ihr)

ω2
�
k2 − s2

� cos(kx − ωt). (23b)

Similarly, substituting Eq. (22a) into Eqs. (1a,b) and taking only the real part yields the liquid’s horizontal and vertical
velocities in terms of A, as follows

u̇l = Ak (g cos(irz)/ω − iω sin(irz)/r) cos(kx − ωt), (24a)
ẇl = −A (irg sin(irz)/ω − ω cos(irz)) sin(kx − ωt). (24b)
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Substituting Eqs. (23a) and (23b) into Eqs. (9a) and (9b), and taking the real part as before, gives

σzz = A

�
4µsk

2 exp (s(z + h)) +
�
k
2 + s

2� �
λk2/q − (λ + 2µ)q

�
exp (q(z + h))

�

· igr sin(ihr) + ω2 cos(ihr)
ω2

�
k2 − s2

� cos(kx − ωt), (25a)

σxz = 4Aµk

�
k
2 + s

2� (exp (q(z + h)) − exp (s(z + h))) · igr sin(ihr) + ω2 cos(ihr)
ω2

�
k2 − s2

� sin(kx − ωt). (25b)

In order to express the pressure, Pl, in term of A, one should substitute Eq. (22c) into Eq. (10) and take only the real part,
as follows

Pl = Aρl

�
g cos(irz) − iω2/r sin(irz)

�
cos(kx − ωt). (26)

In addition, substituting z = −h into Eq. (23b) yields the seabed vertical displacement function

ws(z = −h) = A

�
igr sin(ihr)/ω2 + cos(ihr)

�
cos(kx − ωt). (27)

4. Results for constant depth

For a rigid bottom the dispersion relation (17) simplifies to

tanh(hr) = ω2

gr
. (28)

It can be shown that Eq. (28) has only one real root, and an infinite number of pure imaginary roots. The real root cor-
responds to the well-known gravity wave, whereas the first few imaginary roots can produce progressive acoustic-gravity
waves, as discussed in the introduction. The more complicated structure of the dispersion relation (17) does not support
such a simple picture, since it has not only real and pure imaginary roots, but also complex ones.

For our numerical exampleswe rely on average parameter-values taken from the entries for the crust and ocean in Table 1
of PREM, [6], as given below:

Densities: ρl = 1020 kg/m3, ρs = 2750 kg/m3

Speeds: Cl = 1450 m/s, Cs = 3550 m/s, Cp = 6300 m/s.

For the abovementioned parameters our numerical investigation indicates that the number of progressivemodes for the
problemwith an elastic bottom, (for a wide range of depths and frequencies), is nearly the same as that of the problemwith
a rigid bottom.

We have chosen to present our results for two frequencies ω1 = 1 Hz = 2π rad/s and ω2 = 0.167 Hz, both within
the microseism frequency range, see Fig. 1 in [7]. For ω1 we cover the depths range (0,4000 m), and follow the behavior of
four acoustic-gravity modes; whereas for ω2 we present results for (0,8000 m), and study the variation of the two possible
acoustic-gravity modes.

Figs. 2(a) and 3(a) give the variation of the phase-velocities c = ω/k of all possible progressivemodes for the frequencies
1 Hz and 0.167 Hz, respectively. The dashed curves give the results for a rigid bottom, whereas the solid lines for an elastic
bottom.

All phase-speeds increase with decreasing depth. For a given mode, the curves for the rigid bottom and for the elastic
bottom are almost identical in their deeper part, but diverge at smaller water depth. All progressivemodes for a rigid bottom
terminate at the depth of

hrn � (n − 0.5)π
Cl

ω
, n = 1, 2, . . . (29)

where the phase-velocities tend to infinity (the wavenumbers k tend to zero). All progressive modes for an elastic bottom,
except the first n = 1, terminate at the depth of

hen = (n − 1.5)π
ClCs

ω(C2
s

− C
2
l
)1/2

, n = 2, 3, . . . (30)

where the parameters s = 0 and c = Cs, see (13b). The first progressive mode for the elastic bottom is actually a Scholte
wave, see [8], which turns into a Rayleigh wave at the shoreline. The physical meaning of hrn and hen is discussed later.

The ratio of the ground-amplitude to the free-surface amplitude ws(z = −h)/η is obtained from Eqs. (27) and (19), and
plotted in Figs. 2(b) and 3(b). From these figures it is clear that the vertical motions of the ground and of the free surface are
of comparable size over the whole ocean. The orders of magnitude of these motions are from 10−6 m for microseisms, to
10−2 m for severe earthquakes; see [5] for the first, and [9] for the second. For a gravity wave with frequency 0.167 Hz the



6 E. Eyov et al. / Wave Motion ( ) –

Fig. 2. Progressive acoustic-gravity modes with a frequency of 1 Hz. (a) variation of phase-velocity with depth. (b) variation of the ratio of the ground-
amplitude to the free-surface-amplitude as a function of the water depth. Dashed curves: rigid bottom; solid curves: elastic bottom.

maximum ground-amplitude to free-surface amplitude ratio is reached at a depth of about 6 m and equals 2 × 10−6 which
for a surface wave one meter high, gives a ground amplitude of 10−6 m, see Fig. 4.

5. Results for wave shoaling

The term wave shoaling refers to the two-dimensional problem (one horizontal dimension x) of waves propagating
at normal incidence to straight parallel depth contours, usually in the shoreward direction. Assuming a slowly varying
bathymetry, i.e. (dh/dx)/(knh) � 1; one can use a WKB approach, for which the constant depth solution is valid locally to
obtain: (i) thatω = constant , (thus kn is given by the linear dispersion-relation); and (ii) that the energy-flux Fn = constant;
see [10, Chapter 3].

The energy flux is the product of the energy density En and the group-velocity cg,n (to be distinguished from the phase
velocity cn = ω/kn).

For gravity waves, both cg,0 and c0 are real for any depth, and tend to zero as the depth h tends to zero. As a result, the
wave-steepness tends to infinity and gravity waves break in coastal-waters (usually with minor reflection). For acoustic-
gravity waves, the shoaling scenario is very different. In the case of a rigid bottom: (i) their group-velocity cg,n is real and
decreases with the decrease of depth until it reaches zero at some finite depth hrn, Eq. (29); (ii) their phase-velocity cn is
real and increases with the decrease of depth tending to infinity at the same depth hrn (for depths smaller than hrn: cn and
the wavenumber kn are imaginary). In mathematical terms, the point xrn, for which h(xrn) = hrn, is a turning point, which
causes complete reflection, and requires special mathematical treatment; to be discussed in some detail in the Appendix.
However, the physical picture for acoustic-gravity waves shoaling over a more realistic elastic ground is very different, and
will be clarified in the sequel.

As previously stated, the energy flux is given by
F = cgE, (31)
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Fig. 3. Progressive acoustic-gravity modes with a frequency 0.167 Hz. (a) variation of phase-velocity with depth. (b) variation of the ratio of the ground-
amplitude to the free-surface-amplitude as a function of the water depth. Dashed curves: rigid bottom; solid curves: elastic bottom.

where the group-velocity

cg = dω
dk

, (32)

and the energy density

E = ρl

L

�
L

0
dx

� 0

−h

dz(u̇2
l
+ ẇ2

l
) + ρs

L

�
L

0
dx

� −h

−∞
dz(u̇2

s
+ ẇ2

s
). (33)

In (33) L is the wavelength, given by L = 2π/k; and the principle of equal-partition of kinetic and potential energies in
conservative systems has been applied.

In Figs. 5(a) and 6(a) we present the variation of the group-velocities as function of water depth for ω = 1 Hz and
ω = 0.167 Hz, respectively. Note that for the rigid bottom the group-velocities are zero for hrn, n = 1, 2, . . . , in contrast to
the group-velocities for the elastic-bottom, which are non-zero and finite everywhere.

The variations of the energy density divided by A
2, (E/A2), as function of depth is given in Figs. 5(b) and 6(b). From these

figures one can see that E/A2 for the rigid-bottom is finite for any depth, whereas for elastic-bottoms it tends to infinity at
hen, n = 2, 3, . . . .

Assuming a constant energy flux, Eq. (31) enables to calculate the amplification factor A/A0, where A0 is the amplitude at
the depths of 4000m and 8000m, for frequencies 1 Hz and 0.167 Hz, respectively. These calculations are presented in Figs. 7
and 8, which indicate the profound influence of the bottom structure. For a rigid bottom the shoaling waves attain infinitely
large amplitudes at the turning points hrn, n = 1, 2, . . . . This physically unrealistic result is amendable by an appropriate
local solution, see Appendix. In contrast, for the elastic bottom the comparablemodes propagate intomuch shallowerwater,
until they penetrate infinitely deep into the elastic media, and ‘‘disappear’’ with zero amplitude at hen, n = 2, 3, . . . . Most
important is the Scholte wave which, as already mentioned, propagates all the way to the coast, and reaches its maximum
amplification factor near hr1. This amplification factor varies from6 to 44,when the frequency is varied from0.167Hz to 1Hz.
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Fig. 4. The variation of the ratio of the ground-amplitude to the free-surface-amplitude for a gravity wave with frequency 0.167 Hz.

Fig. 5. Progressive acoustic-gravity modes with the frequency 1 Hz. Variation with depth of: (a) the group velocity; and (b) the ratio of the energy density
to the square of the free-surface-amplitude. Dashed curves: rigid bottom; solid curves: elastic bottom.

6. Summary and conclusions

Themain findings of thiswork are: (i) the dominance of the leading acoustic-gravitymodes (n = 1) over the othermodes
(n ≥ 2), and (ii) the ambiguous effect of the elasticity on this leadingmode. The solution for the leadingmode is only slightly
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Fig. 6. Progressive acoustic-gravity modes with the frequency 0.167 Hz. Variation with depth of: (a) the group velocity; and (b) the ratio of the energy
density to the square of the free-surface-amplitude. Dashed curves: rigid bottom; solid curves: elastic bottom.

Fig. 7. Shoaling of acoustic-gravity mode with the frequency 1 Hz. Dashed curves: rigid bottom; solid curves: elastic bottom.

affected by the elasticity of the ground, as long as thewater-depth is larger than he2. However, for water depths smaller than
hr1 only the solution for an elastic ground, i.e. the so-called Scholte wave, outlasts. Another important finding is the fact that
we can estimate the depth for which the acoustic-gravity wave attains its maximum intensity, as h ∈ (hr1, he2). One may
utilize this knowledge for defining the most suitable location of placing the measuring station for microseism study, as well
as for the early detection of tsunamis. Note that for the acoustic-gravity waves on an elastic ground with n ≥ 2 and h < hen,
a solution of the simple form (12a), (12b), (12c), which is based on separation of variables, does not exist; and that the study
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Fig. 8. Shoaling of acoustic-gravity mode with the frequency 0.167 Hz. Dashed curves: rigid bottom; solid curves: elastic bottom.

of the exact details by which the energy spreads within the liquid and elastic media, at h < hen, n ≥ 2, is beyond our current
understanding.
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Appendix. Acoustic-gravity waves on a rigid bottom at the vicinity of hr1

For a rigid bottom D1 and D2 of Eqs. (12a) and (12b) are zero, and Eq. (12c) for the liquid potential is replaced by

φl = f (x)
cos[ir(h + z)]

cos(irh)
e
−iωt , (A.1)

where f (x) satisfies

d2
f (x)

dx2
+ k

2
f (x) = 0. (A.2)

Note that far from the turning point the wavenumber k is regarded as a constant and f (x) = exp(ikx), whereas a Taylor
expansion of k2 is used at the vicinity of the turning point:

k
2 = k

2|h0 + d(k2)
dh

����
h0

(h − h0) + · · · � −b0s0x, (A.3)

where h0 ≡ hr1 is the water depth, and s0 is the bottom slope at the turning point, and

b0 = π2

2h3
0
. (A.4)

Substituting Eq. (A.3) into Eq. (A.2) leads to the Airy equation (Ai is the Airy function), and the final solution for the
potential at the vicinity of hr1 is

φ(x, z, t) = −2gA0

ω

β0π
1/2

(b0s0)1/6
cos[ir(z + h)]

cos(irh)
Ai

�
(b0s0)

1/3
x

�
cos

�
ωt + π

4

�
. (A.5)

The surface elevation is given by (11) as

η(x, t) = 2A0
β0π

1/2

(b0s0)1/6
Ai

�
(b0s0)

1/3
x

�
sin

�
ωt + π

4

�
. (A.6)

In (A.5) and (A.6) A0 is the amplitude at the reference depth of 4000 m or 8000 m, for frequencies 1 Hz and 0.167 Hz, as
before; and

β0 = r0

rR

�
kR

sin(2ir0h0)

sin(2irRhR)

sin(2irRhR) + 2irRhR

sin(2ir0h0) + 2ir0h0

�1/2

. (A.7)

The subscript 0 denotes values at the turning point, whereas the subscript R denotes values at the reference depth. Note
that, the turning point causes complete wave reflection. The amplification factor at the turning point is given in Fig. A.9.
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Fig. A.9. Effect of the seabed slope s0 on the amplification factor at the turning point hr1. The curves with circles and triangles denote a frequency of
f = 1.0 and 0.167, respectively.

References

[1] F. Ardhuin, A. Balanche, E. Stutzmann, M. Obrebski, From seismic noise to ocean wave parameters: general methods and validation, J. Geophys. Res.
117 (2012) C05002. http://dx.doi.org/10.1029/2011JC007449.

[2] F. Ardhuin, E. Stutzmann, M. Schimmel, A. Mangeney, Ocean wave sources of seismic noise, J. Geophys. Res. 116 (2011) C09004.
http://dx.doi.org/10.1029/2011JC006952.

[3] F.K. Duennebier, R. Lukas, E.-M. Nosal, J. Aucan, R.A.Weller,Wind, waves, and acoustic background levels at station ALOHA, J. Geophys. Res. 117 (2012)
C03017. http://dx.doi.org/10.1029/2011JC007267.

[4] B. Levin, M. Nosov, Physics of Tsunamis, Springer-Verlag, Heidelberg, 2009, p. 327.
[5] M.S. Longuet-Higgins, A theory of the origin of microseisms, Philos. Trans. R. Soc. Lond. Ser. A 243 (1950) 1–35.

http://dx.doi.org/10.1098/rsta.1950.0012.
[6] A.M. Dziewonshi, D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter. 25 (1981) 297–356.
[7] S.C. Webb, The earth’s ‘hum’ is driven by ocean waves over the continental shelves, Nature 445 (2007). http://dx.doi.org/10.1038/nature05536.
[8] J.G. Scholte, On true and psuedo Rayleigh waves, Proc. K. Ned. Akad. Wet. A 52 (1949) 652–653.
[9] M. Stiassnie, Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math. 67 (2010) 23–32.

[10] C.C. Mei, M. Stiassnie, D.K.-P. Yue, Theory and Applications of Ocean Surface Waves. Part 1: Linear Aspects, World Scientific Publishing Co. Pte Ltd.,
2005, p. 506.

http://dx.doi.org/doi:10.1029/2011JC007449
http://dx.doi.org/doi:10.1029/2011JC006952
http://dx.doi.org/doi:10.1029/2011JC007267
http://dx.doi.org/doi:10.1098/rsta.1950.0012
http://dx.doi.org/doi:10.1038/nature05536

	Progressive waves in a compressible-ocean with an elastic bottom
	Introduction
	Formulation
	Solution
	Results for constant depth
	Results for wave shoaling
	Summary and conclusions
	Acknowledgments
	Acoustic-gravity waves on a rigid bottom at the vicinity of  hr1 
	References


